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The stabilizing and destabilizing effects of rate feedback control on all modes
of a strain actuated beam are demonstrated here to support earlier theoretical
findings by Balakrishnan [1] (1999 Journal of Computational and Applied
Mathematics 18). The destabilizing effects being due to the actual implementation
of the rate feedback controller which is unavoidably non-ideal. The main
contribution here is the inclusion of the controller circuit model in the closed loop
system equations to obtain correct stability estimates for all modes. Closed loop
stability estimates computed from this circuitry enhanced model were corroborated
by experiments. The strain actuated beam constructed for this work was made
with a fiber glass lay-up and piezo ceramic wafers embedded throughout the length
of the lay-up. A charge-to-voltage amplifier, a differentiator, a gain stage, and a
power amplifier were also constructed. The most crucial of these components was
the differentiator and its tank frequency. The first four modes and transmission
zero frequencies, and the corresponding structural damping were obtained
through open loop experiments. Mode estimates were within 5% of the computed
values. Zero estimates were less accurate due to electric feedthrough, but
modelling of this effect helped to improve zero frequency estimates. Closed loop
experiments were run to demonstrate the destabilization of beam modes with
frequencies higher than the differentiator’s tank frequency.
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1. INTRODUCTION

The problem of stabilizing a clamped–free bending beam with a straining actuator
and/or sensor has been previously considered and has now become the canonical
problem in strain actuated structures. Bailey and Hubbard [2] were the first to
consider the problem. In their work they bonded a layer of polyvinylidene fluoride,
PVF2, material onto a steel beam and with the use of an accelerometer at the free
end of the beam were able to actively stabilize it. However, only the first few modes
of the beam were considered in their experiments. Their controller design (using
Lyapunov’s second method) showed that rate feedback of the beam’s tip curvature
would maximize energy dissipation.
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Tzou et al. [3, 4] bonded layers of PVF2 onto both surfaces of a cantilevered
plexiglas bending beam. The active material was bonded on the beam from its
clamped end to its free end, and one of the layers was used as an actuator and
the other as a sensor. Since the sensor signal output was shown to be proportional
to the slope of the beam at its tip, the signal was differentiated, amplified and
directly fed into the actuator layer. Tzou et al.’s modelling and analysis of the
system correctly predicted the dependence of damping on the gain of the feedback
loop, and their experiment validated their simulations (first mode only).

Lee et al. [5] considered the problem of PVF2 sensor/actuator shaping for
a cantilevered beam and showed how critical damping could be achieved for a
chosen mode. In their paper they also showed that only 3·3% damping could
be achieved for the first mode whenever the sensor/actuator pair was
uniformly shaped over the entire length of the beam (i.e., no shaping). After
shaping the sensor and actuator pair, Lee and company increased the attainable
damping of the beam to 17·6% for the first mode. They also found it possible to
increase the damping to 100% if a shielded sensor/actuator pair was used
(electrical coupling, or feedthrough, limits system performance). As in reference
[2], Lee used a stainless steel beam for the experiments, and he only considered
the first mode.

The problem considered here is the stabilization and destabilization via rate
feedback of a fiber glass bending beam with clamped–free boundary conditions.
The beam has piezo ceramic wafers (PZT) embedded in its lay-up as opposed to
PVF2 bonded on its surface. The wafers were configured such that a
sensor/actuator pair, uniformly shaped, runs the entire length of the beam (from
clamped to free end).

Theoretical aspects underlying this problem were treated by Balakrishnan [1],
who modelled the beam using the Euler formulation. Balakrishnan showed that
results obtained by Tzou et al. [4] were correct. However, damping performance
limitations due to the fact that exact differentiation of the sensor output is not
possible (a band limited approximation is used instead) were also studied by
Balakrishnan for the first time in the context of self-straining structures. In other
words, modelling of the electronics used to implement the rate feedback controller
coupled with the continuum model of the beam, sensor, and actuator were used
to analyze stability for all system modes (not just the first two or three). Thus,
Balakrishnan’s modelling of controller electronics yielded a circuitry enhanced
model for strain actuated structures. This technique, although cumbersome in
more complicated systems, can be generalized to all structural control systems to
predict high frequency controller effects (i.e., spillover).

Rate feedback implementation issues (i.e., a perfect differentiator cannot be
built) were also shown by Balakrishnan to change the characteristics of the
problem. In particular, it was shown that the approximate differentiator used does
not yield a stable closed loop system. More precisely, all modes of the closed loop
beam whose frequencies were higher than the tank frequency of the rate feedback
circuit were shown to be unstable; on the other hand, all modes of the closed loop
beam whose frequencies were lower than such tank frequency were shown to be
stable.
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Experimental and computational results corroborating Balakrishnan’s
analytical findings are presented here. Details related to the experimental hardware
are first presented in sections 2–4. Then, the system’s circuitry enhanced model and
a summary of important analytical results are given in section 5. Experimental
results are presented in sections 6 and 7, while conclusions and recommendations
are given in section 8.

2. BEAM CONSTRUCTION

The beam used in this work was made with fiber glass cloth and PZT wafers.
The fiber glass was style 112. Cloth thickness was 76·2 (10−6) m (0·003 in.). The
PZT wafers were Navy Type V from Vernitron Inc. Each wafer was 381 (10−6) m
(0·015 in.) thick, 63·5 (10−3) m (21

2 in.) long and 31·8 (10−3) m (1 in.) wide.
The beam was fabricated in three stages. In the first stage, a fiber glass core was

fabricated using the fiber glass cloth. The core was 795 (10−6) m ( 1
32 in.) thick,

46 (10−3) m (1·8 in.) wide and 0·694 m (27 5
16 in.) long. In the second stage, four

separate PZT implants were constructed by cutting eight ‘‘compartments’’ in a
fiber glass lay-up (794 (10−6) m thick).

The compartments were cut in such a way that only the center five fiber glass
layers of cloth were removed. Thus, each compartment was just as deep as the
thickness of a PZT wafer. The compartments were cut in a single row along the
‘‘x’’ axis of the beam; see Figure 1. The separation between compartments was

Figure 1. Beam construction: (a) PZT implant layup, (b) implant configuration, (c) implant
assembled into beam.
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3·2 (10−3) m (1
8 in.), and the first one was cut at one end of the beam. The

compartments were also made such that the long (straining) axis of the wafers was
aligned with the ‘‘x’’ axis of the beam.

For each implant, one PZT wafer was placed in each of the compartments with
the same direction of polarity as the other wafers. Since each wafer has a positive
and negative face, all the positive faces were electrically connected via a silver
ribbon and the negative faces were done in the same way.

Finally, in the third stage, the goal was to put together the core and the implants
and cure the lay-up in an oven. The final lay-up consisted of two implants on each
side of the core. Figure 1 shows a schematic of how the beam was made. Note
that the resulting beam is approximately 396·9 (10−6) m ( 5

32 in.) thick, 0·694 m
(27 5

16 in.) long and 45·7 (10−3) m (1·80 in.) wide. Also, note that the PZT wafers
only cover 0·541 m (21 5

16 in.) of the beam (including compartment separations); this
is the ‘‘active’’ portion of the beam. The remaining length was designed to clamp
the beam, and it is not shown in Figure 1.

To clamp the beam a pair of 19·1 (10−3) m (3
4 in.) thick aluminum square plates

(0·15 m per side) were cut, and the ‘‘clamping’’ portion of the beam was placed
between them using six bolts and nuts. The plates were then bolted to an optical
table. The clamped beam measured 0·541 m (21 5

16 in.) long from root to free end.

3. SENSOR AND ACTUATOR CONFIGURATION

Initially, the PZT sensor and PZT actuator on the beam were configured each
from two implants. The two implants closest to the core (one per side of the beam)
formed the actuator, and the remaining two implants formed the sensor.
Electrically, the implants for the sensor were connected in ‘‘series’’ to maximize
their voltage output, and the implants for the actuator were connected in
‘‘parallel’’ to maximize their stroke (see Figure 1). However, this configuration
produced too much electrical feedthrough between the sensor and the actuator.
Thus, to reduce the feedthrough effect, only two of the implants were used, one
implant from each side of the beam. Although this reduced the feedthrough effect,
it did not eliminate it. Figure 2 shows the beam with the correct sensor/actuator
configuration.

Figure 2. Sensor/actuator configuration.
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Figure 3. Control electronics.

4. ELECTRONICS

The electronics hardware built consisted of a charge-to-voltage amplifier, a
differentiator, a variable gain stage, and a power amplifier. Figure 3 shows a
schematic of the circuitry built.

Note that since an ideal differentiator cannot be implemented, the differentiator
circuit shown in Figure 3 is only an approximation. A typical transfer function
plot of this differentiator and the equivalent circuit used to model it in closed loop
computations is shown in Figure 4. The most important feature of the
differentiator used here is its tank frequency (an ideal differentiator does not have
one). As mentioned earlier, the tank frequency is important because all mode
frequencies of the beam lower than this frequency are stabilized, and all mode
frequencies beyond this frequency are destabilized.

5. THEORY

In this section a circuitry enhanced model, open loop, and closed loop transfer
functions for the smart beam and feedback electronics described in sections 2–4

Figure 4. Transfer function Bode plot of differentiator.



Clamped

Gain
amplifier

(  )

Tip strain + Feedthrough

C

R

L

Actuator
input

Tip
moment~

. . -  . 294

are given. The electrical feedthrough from actuator to sensor is also modelled and
its effect on system response is studied. Root locus analysis of the system is used
to show the dependence of modal stability on the tank frequency of the feedback
circuitry. Finally, sample root loci computations are given to corroborate
theoretical and experimental results.

5.1.   

Following the work of Balakrishnan [1], and earlier developments in the field
of smart structures [2–8] the Euler–Bernoulli beam model is used here with
boundary conditions corresponding to a clamped–free beam. The control law is
rate feedback, with the control effort being proportional to the time derivative of
the charge across the PZT sensor. Letting f(t, x), 0Q xQ l (where l is the beam’s
length), denote the deflection of the beam normal to the x-axis (see Figure 5), the
closed loop model takes on the form

mf� (t, x)+EIf2(t, x)=0, 0Q xQ l,

f(t, 0)= f'(t, 0)= f1(t, l)=0, EIf0(t, l)+ aq̇(t)+ ve (t)=0, (1)

where m, E and I are the mass per unit length, the Young’s modulus, and the
moment of inertia for the beam respectively. a is the closed loop gain, q(t) is the
charge in the sensor, and ve (t) is the system excitation. Both aq̇(t) and ve (t)
constitute the PZT actuator total moment applied to the beam at its free end.

The charge in the sensor, q(t), is related to f(t, x) through the following feedback
circuit equation:

q(t)
C

+Rq̇(t)+Lq̈(t)= v(t),

v(t)= vs (t)+ oxAf0(t, l), vs (t)= xs g
l

0

W(s)f0(t, s) ds, (2)

where C, R and L are the equivalent capacitance, resistance and inductance of the
rate feedback circuit respectively. v(t) is the PZT sensor voltage output taken at

Figure 5. Block diagram of closed loop system: ;, sensor; q=== , actuator; <, beam’s core.
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the output of the charge amplifier (see Figure 3). W(s) is the sensor shape function
which is equal to one for the beam constructed here [1, 5]. xs and xA are constants
relating the voltage across the sensor and the actuator input voltage to the function
f(t, x). Equation (2) also includes the electrical feedthrough from actuator to
sensor which is proportional, oq 0 being the proportionality constant, to the tip
moment applied by the actuator to the beam. Equations (1) and (2) constitute the
circuitry enhanced model for the system.

Evident by inspection of equation (2) is the existence of a tank frequency
associated with the strain rate feedback electronics. The tank frequency can be
computed as

wc =X 1
LC

. (3)

An open loop system input–output model, the input being the tip moment
applied by the PZT actuator and the output being v(t), yields the following transfer
function (with W(s) in equation (2) set to one):

cOpen (l)=
Vs (l)+ oVe (l)

Ve (l)
=

xsf'(l, l)+ oxAf0(l, l)
xAf0(l, l)

, (4)

and the solution of equation (1), with a set to zero, yields

cOpen (l)=
xs [sinh (g · l) cos (g · l)+ cosh (g · l) sin (g · l)]+ xFg[1+cosh (g · l) cos (g · l)]

xAg[1+cosh (g · l) cos (g · l)]
,

(5)

where

g=z=g=n eiu/2 eip/4, l= =l= eiu,

n2 =
m
EI

, xF = oxA . (6)

The ‘‘poles’’ of the open loop system are given by zeros of the denominator of
equation (5), and are denoted {2iwk}.

The ‘‘zeros’’ of the system are given by the zeros of the numerator of equation
1(5) and are denoted {2iwk}.

Clearly, the electrical feedthrough can only affect the zeros of the open loop
system (i.e., the poles of the transfer function are unchanged).

A closed loop system input–output model yields the transfer function

cClosed (l)=
EIcOpen (l)

EI+ aCl(cOpen (l)/p(l))
, (7)

where

p(l)= (1+CRl+CLl2). (8)

As in the open loop case, the poles of the closed loop system are computed from
the denominator of equation (7) and are denoted

{lk}= {sk (a)+ iwk (a)}. (9)
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T 1

System properties

EI=10·46 N-m2 (3647·89 Lbf-in.2)
m=0·649 kg/m (1·13×10−3 slugs/in.)

o=0·0022
L=0·541 m (21·3125 in.)

xs =419·584
xA =775 157·246

xF = oxA

C=0·82×10−3

RC=4·054×10−3

LC=0·82×10−6

The zeros of equation (7) remain unchanged.
For future reference, beam parameters are summarized in Table 1. The

differentiator parameters used in simulations are also summarized in this table.

5.2.   o      

In this section the electrical feedthrough from actuator to sensor, o, is shown
to reduce the frequencies of the zeros of the transfer function.

A partial fraction expansion for the system’s open loop transfer function,
equation (4) with o=0, is given by

c	 (l)=cOpen (l)=o=0 =
xsf'(l, l)
xAf0(l, l)

= s
a

1

bkv
2
k

l2 +v2
k
, (10)

where

bk =
4
l

(cosh (gk · l)−1)
(cosh (gk · l)+1)

1
vkn

q 0, for every k. (11)

From equations (10) and (11) it follows that lc	 (l) is positive real (i.e.,
Re [lc	 (l)]q 0 for Re lq 0). (This can be readily seen by inspection of
Re [l/(l2 +v2

k )] which is positive or zero for every k.) Moreover, since

− lc	 (−l)=−lc	 (l),

the zeros of lc	 (l) must be on the imaginary axis. Now, let {2iṽk} denote the
zeros of c	 (l). Then, from the positive real property of lc	 (l) it follows that the
poles, {2ivk}, and the zeros of lc	 (l) alternate on the imaginary axis. Thus,

0Qv1 Q ṽ1 Qv2 Q · · · Qvk Q ṽk Qvk+1.

o can now be considered. First, the open loop transfer function, equation (4),
can be rewritten as

cOpen = o+c	 (l), oq 0.
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Hence, l(o+c	 (l)) is positive real if lc	 (l) is positive real (o is positive). In
particular, the zeros and poles of equation (4) also alternate on the imaginary axis;
however, while the ‘‘pole’’ frequencies are not affected by o, the ‘‘zero’’ frequencies
are reduced. To see this, note that since

cOpen (iṽk )= o+c	 (iṽk )q 0,

the following condition is necessary:
1 1

cOpen (ivk )= o+c	 (ivk )=0,

1and subtracting cOpen (iṽk ) from cOpen (ivk ) (using equation (10)) yields

10Qvk Qvk Qvk , for each k.

Thus, electrical feedthrough reduces the frequencies at which the open loop
transfer function is zero. Computational and experimental results in sections 6 and
7 validate this result.

5.3.   

The focus of this section is on the stability of the closed loop system and its
dependence on the compensator’s tank frequency. The denominator of the closed
loop transfer function, equation (7), can be rewritten as

g(l; a)= p(l)D(l)+ al(oD(l)+N(l)), (12)

where

N(l)=
1
g

sinh (g · l) cos (g · l)+ cosh (g · l) sin (g · l), (13)

D(l)= [1+cosh (g · l) cos (g · l)], (14)

and where g and p(l) were defined in section 5.1. To construct the root locus, let
l(a) denote a zero of g(l):

g(l(a); a)= p(l(a))D(l(a))+ al(a)[oD(l(a))+N(l(a))]=0. (15)

Equation (15) defines l(a) as a multivalued analytic function of a. Solving for
a in equation (15) yields

a=
− p(l)D(l)

l(oD(l)+N(l)) bl= l(a)

. (16)

Equation (16) shows that a is zero whenever p(l) or D(l) are zero. This
corresponds to the poles of the compensator or the poles of the open loop system.
On the other hand, if a is infinity this corresponds to the denominator of equation
(16) being zero, which occurs only at the frequencies of the zeros of the open loop
transfer function or at l=0. Thus, equation (16) shows that the sequence of
functions {lk (a)} will move from their open loop values {lk (a=0)}= {ivk}, to

1{lk (a=a)}= {ivk} (the zeros of the open loop system). On the other hand,
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equation (16) also shows how the functions lc (a), the circuit modes, move from
their open loop values, lc (a=0)$ 0, to their closed loop values lc (a=a)=0.

Having established the beginning, a=0, and the end, a=a, of the root loci,
the sign of the slope of departure for the analytic functions lk (a) can be derived.
From equations (15) and (16) the derivative of lk (a) with respect to a is given
by

dlk (a)
da ba=0,

o=0

=
(−ivk )N(ivk )
p(ivk )D'(ivk )

=
(−ivk )
p(ivk )

bkv
2
k

2ivk

= &12 bkv
2
k · 0v

2
k

v2
c
−11

=p(ivk )=2 '+ i$bkv
3
k ·

RC
=p(ivk )=2%= s'k (0)+ iv'k (0). (17)

Note that v'k (0)q 0 and

s'k (0)Q 0 if 0Qvk Qvc , and s'k (0)q 0 if 0Qvc Qvk ,

In particular, equation (17) shows that for small positive a:

vk (a)qvk (0), sk (a)Q 0 if vk Qvc , and sk (a)q 0 if vk qvc .

Hence, in the neighborhood of a=0 all system modes whose frequencies are
lower than the tank frequency of the compensator will be stabilized, while all
modes whose frequencies are higher than the tank frequency will be destabilized.

Next, it is necessary to show that these results also apply for every 0Q aEa.

Lemma 1 (Balakrishnan [1])
All closed loop modes with vk qvc are unstable for every 0Q aEa.

Proof
This result has already been shown to hold in the neighborhood of a=0. Now,

the emphasis is on showing that Re [lk (a)]= sk (a)q 0 for vk qvc and for all
0Q aEa. To show this by contradiction, assume that there exists an az such that

sk (az )=0; sk (a)q 0, 0Q aQ az ,

but evaluating the imaginary part of equation (15) for the case where sk (az )=0
shows that v=1/zLC=vc , and using this to evaluate the real part of equation
(15) yields the following necessary condition:

(o+c(ivc ))Q 0.
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The slope of sk (az ) is obtained by taking the real part of the derivative with
respect to a of l(a), where l(a) is obtained from equation (15),

dsk (a)
da ba= az,

v=vc

= s'k (az )=Re & (−ivc )(o+c(ivc ))

2i
vc

+RC+ ac0o+ s
a

1

bkv
2
k (v2

k +v2
c )

(v2
k −v2

c )2 1'. (18)

Inspection of equation (18) shows that s'k (az ) has the same sign as −(o+c(ivc ))
and since (o+c(ivc ))Q 0 (a necessary condition) then s'k (az )q 0; but this is not
possible at the point where sk (a$ 0)=0 for the first time. Hence,

sk (a)q 0 for every aq 0.

Lemma 2 [1]
All closed loop modes with vk Qvc are stable for every 0Q aEa.

Proof
This result has already been shown to hold in the neighborhood of a=0. Now,

following the arguments of Lemma 1, assume that there exists an az such that

sk (az )=0; sk (a)Q 0, 0Q aQ az

which implies that v=1/zLC=vc and the following necessary condition:

(o+c(ivc ))Q 0.

But, since

ṽk Qvc Qvk+1,

it follows from the product expansion of c(l) that

c(iv)q 0

which constitutes a contradiction because oq 0.

Figure 6. Simulated root loci: (a) modes 1–3, (b) simulated root loci modes 4–6.
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5.4.   

Equation (7) was used to generate Figures 6(a) and (b). These figures show the
root loci (as a function of gain and for the first six modes only) for the beam and
electronics described in sections 3 and 4 above (see Figures 3–5 and Table 1). For
these simulations the tank frequency of the differentiator was set to 1118·41 rad/s
(or 178 Hz). Note that starting with the fourth mode (1656·69 rad/s or 263·67 Hz)
all closed loop beam modes are destabilized in contrast to the first three modes.
Also, note that each root locus has a maximum (or minimum) real part.

6. BEAM TESTING AND VALIDATION

Once the beam was fabricated, tests had to be run to make sure the implants
were not shorted, and that all wafers in each patch were indeed connected to each
other. Also, the beam’s dimensions, stiffness, and modal frequencies had to be
measured and compared to the original design and computed values.

First, the capacitance of the implants was measured and the results are shown
in Table 2. Note that the computed capacitance corresponds to unrestrained PZT,
and the measured capacitance corresponds to restrained PZT (i.e., embedded in
the fiber glass) which explains the large discrepancies. (The capacitance of
restrained PZT is expected to drop by 10–20% in comparison to unrestrained
PZT.)

By design the elastic modulus of the beam was tailored to construct a beam
whose first modal frequency was near 7·8 Hz (this was the first modal frequency
of the beam constructed by Lee [5]). The modulus computed for the desired
geometry was 4·2 (1010) Pa (6·10 (106) psi). This number includes the effect of the
PZT wafers embedded in the lay-up.

Experimentally, the modulus of the beam was estimated by applying a static
force at the tip of the beam, measuring the resulting displacement, and then
computing the modulus. Thus, the measured value of the equivalent Young’s
modulus was 4·4 (1010) Pa (6·375 (106) psi). The mass per unit length was also
measured for the active portion of the beam, this measurement yielded 0·649 kg/m
(1·13 (10−3) slugs/in.).

The actuator moment output per DC voltage input was also measured. The
maximum DC voltage available was 2 100 V. A DC voltage of 160 V

T 2

Implant capacitance

Restrained PZT Unrestrained PZT
Measured Computed

Implant No. (mF) (mF) % Difference

1 0·640 0·764 16·2
2 0·604 0·764 20·9
3 0·626 0·764 18·0
4 0·650 0·764 14·9
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(2 80 v) was applied to the actuator. The tip displacement produced by this
voltage was 0·0012 m (3/64 in.). The tip moment corresponding to this
displacement is 0·085 N-m (0·7529 lbf-in.). This measurement implies an actuator
constant (static) of 532·0 (10−6) N-m/V (0·471 (10−2) lbf-in./V). Similarly, the PZT
sensor constant was measured as 655·6 V/rad, where the angle measured is the
angle of the beam at its free tip.

6.1.     

The open loop poles and zeros of the beam were measured through the PZT
sensor/actuator pair embedded in the beam. To do this, the actuator was driven
by white noise, and the sensor response was recorded. A Bode plot of the measured
transfer function of the beam was then computed, and the frequencies of the poles
and zeros of the beam were read from the plot.

Figure 7(a) shows the experimental set-up used to obtain the open loop poles
and zeros of the beam. Figure 7(b) shows the simulated bode plot of the transfer
function of the beam using equation (4). Table 3 shows the computed and
measured open loop pole and zero frequencies as well as their corresponding
percentage damping.

Figure 7. (a) Open loop experimental set-up; <, sensor; ;, actuator; , beam’s core; q, implants
not used. (b) Simulated open loop transfer function Bode plot.
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T 3

Pole and zero frequencies and % damping

Poles Zeros
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXV

Computed Computed Experiment
frequencies (Hz) Experiment frequencies (Hz) frequencies (Hz)

No. [o=0] [o=0·0022] (Hz) Damping (%) [o=0] [o=0·0022] No compensation

1 7·67 7·67 7·81 0·50 12·16 10·96 11·00
2 48·05 48·05 49·60 0·45 65·70 58·40 59·20
3 134·50 134·50 138·00 0·40 162·27 147·60 142·00
4 263·67 263·67 272·00 0·40 301·74 278·60 284·00

Note the two sets of computed frequencies for both the poles and zeros of the
beam shown in Table 3. The first of the two columns in each case corresponds
to frequencies computed using equation (4) with the electrical feedthrough term
set to zero. The second of the two columns corresponds to frequencies computed
using equation (4) but with the feedthrough term set to an experimentally
determined positive value (more about this in the next section). As discussed in
section 5, pole frequencies were not affected by the electrical feedthrough. On the
other hand, computed zero frequencies were reduced by electrical feedthrough, as
predicted in section 5. The reduction of the zero frequencies is verified by
experimental results also shown in the table.

Table 3 also shows the measured structural damping for each of the first four
modes. This inherent structural damping, not modelled in section 5, precludes the
destabilization of higher frequency modes by the feedback compensator (as
predicted in section 5).

6.2.  

The lack of shielding between sensor and actuator caused electrical feedthrough
between them. This effect reduces the frequency of the transmission zeros, but does
not affect pole frequencies. Since the transmission zeros influence the performance
of the rate feedback compensator [1, 5], it is necessary to model and estimate the
actual levels of feedthrough. Thus, the feedthrough was modelled as being directly
proportional to the actuator’s input voltage, see equation (2).

The proportionality constant, o, is found experimentally by iteratively
subtracting from the measured sensor voltage, Vm , a voltage proportional to the
actuator’s input voltage (in open loop). The resulting ‘‘compensated’’ voltage is
then used to compute the open loop transmission zeros. o is fixed when the zeros
thus computed match the predicted zeros of a ‘‘tuned’’ model (tuned to the
experimentally determined poles of the beam) in which the feedthrough effect is
neglected. Thus, o was found to be 0·0022. This value of o was used in equation
(4) to compute the transmission zero frequencies of the system, which can be
compared to the zero frequencies determined experimentally (see Table 3).

Although this technique for determining the value of o could be substituted with
a computational iterative procedure using equation (4), the experimental
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Figure 8. Closed loop experimental set-up: experiment 1.

procedure used here offers two advantages. First, if the ‘‘zero’’ frequencies of the
open loop compensated system (as described in the last paragraph) can be
increased enough to match the ‘‘zero’’ frequencies of a system without
feedthrough, then this justifies the model for o used in section 5. Second, the
possibility of changing ‘’zero’’ frequencies for the system (through the use of a
secondary feedback loop) offers an increase of performance and robustness to
control schemes that rely on the location of such zeros (i.e., pole/zero placement,
pole/zero cancellation, etc.). Further research on this seems plausible.

7. CLOSED LOOP EXPERIMENTS

Two closed loop experiments are described here. For the first experiment, the
tank frequency of the differentiator was placed between the first and the second
modes. For the second experiment the tank frequency of the differentiator was set
between the third and fourth modes. The primary goal of these experiments is to
show the stabilization of modes prior to the tank frequency, and the
destabilization of modes after the tank frequency.

7.1.  1

In this experiment the differentiator’s tank frequency was set between the first
and second modes of the clamped–free beam (tank frequency at about 10·44 Hz),
and the gain was set to 2·7. The intention here was to demonstrate how the

Figure 9. Transfer function Bode plot of differentiator: experiment 1.
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damping in the first mode can be improved while setting the second mode unstable.
Figure 8 depicts the closed loop experimental set-up for this experiment. The
transfer function of the differentiator used, its circuit diagram and equivalent
circuit are depicted in Figure 9.

The experiment was conducted as follows. First, the free tip of the cantilevered
beam was deflected 2·54 (10−3) m (0·1 in.) and then released. Thus, the beam’s first
mode was excited, and the beam was allowed to vibrate for about 3 s. Then, the
loop of the compensator was closed. After closing the loop, the beam stopped
vibrating at its first modal frequency and began vibrating at its second modal
frequency. Then, the magnitude of vibration of the second mode increased in
magnitude until all circuits saturated. At this point the loop was opened.

This response of the beam during this process was recorded using the PZT
sensor on the beam, a personal computer, the National Instruments E1 data
acquisition board and a Virtual Instrument created in LabVIEW8. Figure 10
shows the beam’s response as a function of time.

Figure 10 clearly shows how the first mode of the beam is damped after closing
the loop. The amount of damping added to this mode was estimated by filtering
all higher frequencies in the data and measuring the logarithmic decrement of the
response after the loop was closed. The damping thus estimated was 7·4% (up
from 0·5%). Figure 10 also shows how the beam starts vibrating at its second
modal frequency, and it continues to do so without bound (other than the eventual
circuit saturation). Thus, the rate feedback used here is clearly stabilizing the first
mode and destabilizing the second as predicted in section 5.

Although the second mode is being destabilized, there is no evidence in
Figure 10 that higher modes are also being destabilized as predicted earlier. To
understand this discrepancy, first note that the beam model give in section 5 did
not include the structural damping inherent in the beam; thus, destabilization of
modes whose frequencies are higher than the differentiator’s tank frequency is
prevented by the inherent damping unless the gain of the feedback loop is

Figure 10. Closed loop response of beam measured by PZT sensor: experiment 1.
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sufficiently high. This is in effect the phenomenon observed here. For example,
when the gain was reduced by 10%, the second mode was no longer destabilized.
This observation also suggests that it is possible to design and implement a stable
system (i.e., with negative real part for all closed loop poles), of the type
constructed here, as long as certain guidelines are observed.

7.2.  2

In this experiment the differentiator’s tank frequency was set between the third
and fourth modes (tank frequency at 178 Hz). The goal of this experiment was to
demonstrate how a stable system can be achieved. According to reference [1], the
damping in the first three modes should increase as the loop gain increases, while
the fourth mode (and higher ones) should be destabilized.

The experimental set-up used here was as depicted in Figure 8. The
differentiator’s circuitry and transfer function are shown in Figure 3. Figures 11(a)
and 11(b) show the computed damping values as functions of loop gain (first six
modes only). For these calculations equation (7) and the system parameters given
in Table 1 were used to compute the root loci for the first six modes. Damping
values were then extracted from each of the root loci. Note how the negative
damping in the first three modes first increases (reaching a maximum value) and
then decreases with increasing loop gain. On the other hand, the positive damping
in the fourth and higher modes follows the same pattern.

Figure 12 shows the experimental open and closed loop transfer function Bode
plots of the beam from PZT sensor to PZT actuator (the closed loop gain was set
to 60). Again, the damping for the first three modes was increased, while the
damping in the fourth mode was decreased (this is evident from the narrowing of
the fourth mode’s peak). In particular, measurement of the first mode’s damping
yielded −12·0%; its open loop value was −0·50%. And, measurement of the
fourth mode’s damping yielded −0·1%; its open loop value was −0·4%.

When the gain was increased to 70, the sixth mode of the beam 651 Hz became
unstable (instead of the fourth or fifth modes). This can be anticipated from
Figures 11(a) and (b) which shows that more damping is subtracted from the sixth
mode than any other mode, and from knowledge of the open loop damping levels
(about 0·4% for the first few modes).

Figure 11. Computed damping performance: (a) modes 1–3, (b) modes 4–6.
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Figure 12. Open versus closed loop transfer functions: experiment 2; tank frequency of
differentiator at 178 Hz; gain set at first mode’s critical value (Rf=11·7 K).

The open loop transfer function Bode plot shown in Figure 12 should be
compared to the computed one in Figure 7(b). The measured frequency response
shown in Figure 12 is higher than the computed one in Figure 7(b) by a constant.
This discrepancy was caused by measurement of the excitation signal before its
amplification stage shown in Figure 3. The resonant frequencies of the two figures
were already compared in Table 3 where the percentage error in the computed
values was less than 5%. Damping was experimentally measured to be less than
0·5% for the first four modes, whereas the mathematical model of section 5 did
not include any damping. The absence of damping in the model was emphasized
by the relatively low amplitude response of the beam at its third mode, shown in
Figure 12, in comparison to what was computed and shown in Figure 7(b).

8. CONCLUSIONS

Experiments with a strain actuated beam have helped verify Balakrishnan’s
findings [1]. Laboratory experiments, in agreement with computational
predictions, have demonstrated how rate feedback compensation for a
clamped–free beam stabilizes some modes while destabilizing others (in contrast
to stabilizing all modes [8]). This phenomenon is due to the non-ideal
implementation of the differentiator, thus showing the importance of modelling
the controller’s circuitry.

Modelling the controller’s circuitry in the conext of self-strained structural
systems was introduced by Balakrishnan [1]. In the work presented here,
continuum models of strain actuated systems and their associated controller
electronics are referred to as circuitry enhanced models. This work also appears to
be the first time a circuitry enhanced model for a self-strained beam and associated
controller is corroborated by laboratory experiments.
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The presence of inherent structural damping in the beam, not modelled here,
maintains closed loop stability as long as the feedback loop gain remains
sufficiently small. This means that the stability of strain actuated beams (like the
one studied here) can only be partially enhanced: ‘‘While the stability margin of
all modes below the differentiator’s tank frequency is increased, the stability of all
remaining modes is decreased (when compared to their open loop stability
margin); and, for a sufficiently small feedback gain, the overall system remains
stable’’.
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